Главная - Водоснабжение
Схема работы анализаторов. Ощущение. Основные характеристики прибора

Ощущения являются продуктом деятельности анализаторов человека. Анализатором называют взаимосвязанный комплекс нервных образований, который осуществляет прием сигналов, их трансформацию, настройку рецепторного аппарата, передачу информации к нервным центрам, ее обработку и расшифровку. И. П. Павлов считал, что анализатор состоит из трех элементов: органа чувств, проводящего пути и коркового отдела. Согласно современным представлениям в состав анализатора входит как минимум пять отделов:

  1. рецепторный;
  2. проводниковый;
  3. блок настройки;
  4. блок фильтрации;
  5. блок анализа.

Так как проводниковый отдел, по сути, представляет собой всего лишь «электрический кабель», проводящий электрические импульсы, наиболее важную роль выполняют четыре отдела анализатора (рис. 5.2). Система обратной связи позволяет вносить корректировку в работу рецепторного отдела при изменении внешних условий (например, тонкую настройку анализатора при разной силе воздействия).

Рис. 5.2.

Если в качестве примера взять зрительный анализатор человека, через который поступает большая часть информации, то эти пять отделов представлены конкретными нервными центрами (табл. 5.1).

Таблица 5.1. Структурно-функциональные характеристики составных элементов зрительного анализатора

Составные элементы (блоки) зрительного анализатора Строение Функции
Рецепторный блок Образован специальными фоторецепторными клетками (палочками и колбочками) Фоторецепторы способны вырабатывать электрические потенциалы в ответ на воздействие света на глаз человека
Проводящий блок Образован сначала зрительными нервами, а после их перекреста - зрительным трактом Проведение электрических импульсов от рецепторов к мозгу
Блок настройки Передние бугры четверохолмия среднего мозга Отвечает за формирование четкого изображения на сетчатке глаза. Четкость обеспечивается, во-первых, созданием оптимального уровня освещенности, а во-вторых, точной фокусировкой изображение на сетчатке. Первая задача осуществляется путем автоматического изменения диметра зрачкового отверстия, а вторая - путем изменения кривизны хрусталика
Блок фильтрации Таламус (латеральные коленчатые тела) Обеспечивает пропускание к коре больших полушарий только новой информации, отсеивая повторяющиеся сигналы
Блок анализа Соответствующий участок коры больших полушарий (для зрительного анализатора - затылочная доля) Обеспечивает подробный анализ изображения и формирование зрительных ощущений - то есть только в этом отделе мозга физиологические явления трансформируются в психические

Помимо зрительного анализатора, с помощью которого человек получает значительную долю информации об окружающем мире, для составления целостной картины мира важны и иные анализаторы, воспринимающие химические, механические, температурные и иные изменения внешней и внутренней среды (рис. 5.3).

Анализатор гармоник представляет собой высокоизбирательное устройство, при помощи которого можно измерить амплитуду и частоту одной гармонической составляющей в присутствии всех других.


Рис. 10.2.

По схемным решениям анализаторы гармоник подразделяют на анализаторы с избирательными контурами и гетеродинные (рис. 10.2 рис. 10.2). В диапазоне низких частотах избирательные контуры выполняют в виде узкополосных фильтров, в диапазоне высоких частот используют колебательные контуры, на СВЧ – объемные резонаторы.

При параллельном анализе исследуемый сигнал после входного устройства поступает одновременно на n каналов, состоящих из узкополосных фильтров, настроенных на основную частоту и ее гармоники (рис. 10.3 рис. 10.3). Напряжения соответствующих гармонических составляющих после квадратичного детектирования через коммутирующее устройство попадают на индикатор , регистрирующий абсолютные или относительные значения напряжения гармоник. При малом числе каналов (например, 3 или 5) коммутатор не обязателен, можно использовать необходимое количество индикаторов.


Рис. 10.3.

Анализаторы гармоник применяются в основном для исследования гармонических составляющих несинусоидальных сигналов низкой частоты.

Анализаторы спектра

Анализатор спектра представляет собой панорамное устройство, при помощи которого можно наблюдать на экране электроннолучевой трубки спектр исследуемого сигнала. Наиболее распространенная структурная схема спектра представлена на рис. 10.4 рис. 10.4 . Исследуемый периодический сигнал сложной формы поступает через входное устройство на смеситель, к которому подводится напряжение генератора качающейся частоты. Линейное изменение частоты во времени производится изменением напряжения генератора развертки. Вследствие этого отклонение электронного луча по горизонтали пропорционально отклонению частоты от среднего значения и горизонтальная ось является осью частот. На выходе смесителя образуются напряжения комбинационных частот. Составляющие, частота которых лежит в полосе пропускания усилителя промежуточной частоты усиливаются и после детектирования в квадратном детекторе и усиления в видео усилителе поступают на вертикально отклоняющие пластины электроннолучевой трубки. Таким образом, отклонение луча по вертикали пропорционально мощности определенной узкой полосы спектра исследуемого сигнала (от до ), удовлетворяющему равенство

(10.7)

В некоторых анализаторах спектра используют логарифмические усилители, которые дают возможность наблюдать составляющие спектра с большим отношением амплитуд (100:1 или 1000:1). В таких анализаторах логарифмический режим можно менять на линейный.


Рис. 10.4.

Калибратор предназначен для создания на экране трубки частотных меток.

Основным недостатком анализаторов представленного действия является большая продолжительность анализа.

Диапазон качания частоты гетеродина определяется шириной исследуемого спектра. Для измерения основного или трех боковых лепестков диапазон качания должен быть равен . (рис. 10.5 рис. 10.5)

Частотна развертки определяет количество циклов качания частоты гетеродина в секунду. Минимальная величина периода развертки характеризуется временем последовательного анализа T посл При анализе спектра периодических импульсных сигналов период развертки Т раз связан с периодом следования сигналов T c соотношением: , где m – число линий спектра, наблюдаемых на экране трубки.

Промежуточная частота анализатора спектра должна быть такой, чтобы при минимальной длительности исследуемого импульса? изображение спектра, получаемое по зеркальному каналу, не накладывалось на спектрограмму основного канала (рис. 10.5 рис. 10.5).


Рис. 10.5.

Измерение нелинейных искажений

Нелинейным искажение гармонического сигнала называется изменение его формы, возникающее в результате прохождения сигнала через устройство, содержащее нелинейный элемент. Искаженный сигнал можно представить в виде суммы постоянной составляющей, первой гармоники с частотой f и высших гармоник к частотам .

Мерой нелинейного искажения гармонического сигнала является коэффициент гармоник, характеризующий отличие формы данного периодического сигнала от гармонического

(10.8)

где A i – амплитуда i -й гармоники сигнала.

Нелинейные искажения измеряют двумя методами: гармоническим и комбинационным. При гармоническом методе на вход испытуемого устройства подают один гармонический сигнал, при комбинированном – два (или три) сигнала разных частот. Существует статистический метод, при котором на вход подают шумовой сигнал.

Измерение нелинейных искажений гармоническим методом осуществляется при помощи прибора – измерителя нелинейных искажений. Входное устройство предназначено для согласования выходного сопротивления исследуемого объекта с входным сопротивлением измерителя нелинейных искажений. Широкополосный усилитель обеспечивает усиление сигнала до величины, удобной для отсчета и дальнейших вычислений. Полоса пропускания усилителя охватывает диапазон частот от нижней рабочей частоты до пятикратного значения верхней частоты, на которой измеряются нелинейные искажения.

Диапазон рабочих частот устанавливается переключением резисторов R , плавная настройка осуществляется сдвоенным блоком конденсаторов переменной емкости.

Для наблюдения формы сигнала или его высших гармоник предусмотрен выход на осциллограф. Выпускают для работы в диапазоне низких (звуковых частот).

Представляет собой совокупность структур, воспринимающих световую энергию и формирующих зрительные ощущения. Согласно современным представлениям, 80-90% всей информации об окружающем мире человек получает благодаря . С помощью зрительного анализатора воспринимаются размеры предметов, степень их освещённости, цвет, форма, направление и скорость передвижения, расстояние, на которое они удалены от глаза и друг от друга. Всё это позволяет оценивать пространство, ориентироваться в окружающем мире, выполнять различные виды целенаправленной деятельности.

Описание полей схемы:

Схема строения зрительного анализатора: 1 - сетчатка, 2 - неперекрещенные волокна зрительного нерва, 3 - перекрещенные волокна зрительного нерва, 4 - зрительный тракт, 5 - наружнее коленчатое тело, 6 - латеральный корешок, 7 - зрительные доли

Выходя из глаза, зрительный нерв делится на две половины. Внутренняя половина перекрещивается с такой же половиной другого глаза и вместе с наружной половиной противоположной стороны направляется к метаталамусу, где расположен следующий нейрон, заканчивающийся на клетках зрительной зоны в затылочной доле . Часть волокон зрительного тракта направлена к клеткам четверохолмия , от которых начинается тектоспинальный путь рефлекторных ориентировочных движений, связанных со зрением. Кроме того, в четверохолмии имеются связи с парасимпатическим ядром Якубовича, от которого начинаются волокна глазодвигательного нерва, обеспечивающие сужение зрачка и аккомодацию глаза.

Основные характеристики прибора:

  • до 32 входных каналов;
  • память 128 КБайт на каждый канал;
  • частота дискретизации до 100 МГц;
  • вход внешнего тактирования;
  • все входы совместимы с 3.3 В и 5 В логикой;
  • настраиваемый размер буфера предвыборки/поствыборки кратный 8 КБайт;
  • 16 битный генератор внутренней синхронизации;
  • несколько режимов внутренней синхронизации;
  • программируемая задержка синхронизации;
  • программируемый счетчик событий синхронизации;
  • вход внешней синхронизации;
  • коммуникация с ПК по LPT (EPP режим) или USB интерфейсу;
  • несколько версий приложений для ПК под различные операционные системы.

Основным элементом логического анализатора является ПЛИС , производства компании , которая и выполняет все основные функции. Принципиальная схема прибора изображена на Рисунке 1.

В качестве источника тактовой частоты для ПЛИС используется осциллятор IC4 (IC6), позаимствованный со старой материнской платы компьютера. Несмотря на то, что осциллятор рассчитан на работу при напряжении 5 В, проблем в работе прибора при питании его напряжением 3.3 В выявлено не было.

Для хранения выборок используется внешнее быстродействующее ОЗУ - микросхема .

Для питания прибора используется внешний источник с выходным напряжением до 15 В. ПЛИС и ОЗУ имеют напряжение питания 3.3 В, поэтому установлен регулятор напряжения 3.3 В серии LD1117DT33 .

Коннектор параллельного порта K7 размещен на плате логического анализатора и подключен непосредственно к ПЛИС. Печатная плата логического анализатора двухсторонняя, используются компоненты для поверхностного монтажа и обычные компоненты с выводами. Вид печатной платы показан на Рисунке 2.

Замечание. Вместо вывода 40 (Vss) микросхемы SRAM к «земле» подключен вывод 39 этой микросхемы. Решение: соединить на печатной плате вывод 39 и 40 вместе (вывод 39 не используется в микросхеме SRAM).

Для подключения к персональному компьютеру по интерфейсу USB необходимо использовать специальный адаптер, схема которого изображена на Рисунке 3.

Адаптер USB интерфейса для логического анализатора собран на микросхеме серии FT2232C производства компании FTDI. Данная микросхема объединяет в себе функциональность двух отдельных микросхем FT232BM и FT245BM. Она имеет два канала ввода/вывода, которые конфигурируются отдельно. Основные моменты конфигурации FT2232C для применения в составе прибора - это питание от USB интерфейса и режим эмуляции шины микроконтроллера (MCU Host Bus Emulation mode). Этот режим конвертируется в протокол EPP посредством мультиплексора IC3 74HCT4053D. Так как непосредственное декодирование сигналов /DST, /AST и RD/WR может вызывать конфликты таймингов, используется дополнительный сигнал A8, который используется в качестве сигнала RD/WR (чтение/запись) в периоды передачи данных по EPP протоколу.

Коннектор JTAG (CON2) используется для конфигурирования ПЛИС - это для будущих разработок, на текущий момент данный интерфейс не используется.

Микросхема EEPROM серии 93LC56 (IC2) хранит конфигурационные данные для микросхемы FT2232C и является обязательным элементом для правильного функционирования программируемого интерфейса. Для программирования данной микросхемы используется утилита FT_Prog (ранее она имела название MProg). Данная утилита и драйвера FT2232C доступны для скачивания на сайте компании FTDI.

Печатная плата адаптера разработана односторонней, что упрощает ее изготовление.

Существует также версия B 1.0 адаптера USB интерфейса (Рисунок 5). Данная версия отличается отсутствием коннектора JTAG и печатной платой, которая выполнена с учетом встраивания ее в корпус коннктора CANNON 25. Внешний вид собранных адаптеров а Рисунке 6.

a) b)
Рисунок 6. Внешний вид адаптера USB интерфейса версия A 1.1 (а) и версия B 1.0 (b)

Также имеется еще одна версия схемы логического анализатора (Рисунок 7), в которую уже интегрированы интерфейсы USB и LPT. Автором этого варианта является Bob Grieb и при разработке схемы использовалась среда TinyCAD, печатная плата для него разрабатывалась в редакторе FreePCB.

Структурная схема анализатора последовательного типа приведена на рис. 2.23.

Рис. 2.23. Структурная схема анализатора последовательного типа

Входной сигнал U вх поступает на входное устройство 1 анализатора, где усиливается усилителем или ослабляется аттенюатором до нужного значения и поступает на смеситель 2 . Смеситель перемножает входной сигнал и сигнал гетеродина 6 , частота, которого изменяется по линейному закону с помощью модулятора 7 . На выходе смесителя ставится резонатор 3 ,выделяющий сигналы суммарной или разностной частоты гетеродина и входного сигнала.

На рис. 2.24 представлена структурная схема анализатора, отличающаяся от структурной схемы, изображенной на рис. 2.23, наличием частотного детектора, преобразующего частоту гетеродина в напряжение постоянного тока.

Рис. 2.24. Структурная схема анализатора с частотным детектором:

1 – входное устройство, 2 – смеситель, 3 – резонатор, 4 – детектор,

5 – широкополосный усилитель, 6 – гетеродин, 7 – модулятор, 8 – усилитель горизонтального отклонения, 9– индикатор, 10 – частотный детектор

Это позволяет снизить требования к гетеродину относительно стабильности частот и линейности модуляционной характеристики. В этой схеме точность отсчета частоты определяется стабильностью коэффициента передачи частотного детектора и линейностью его характеристики в диапазоне частот перестраиваемого гетеродина.

В анализаторах для ослабления помех по зеркальному каналу используют двойное преобразование частоты. Эти помехи могут возникать из-за того, что резонатор не сможет различить два сигнала, если выполняется условие

В схеме анализатора с двойным преобразованием частоты (Рис. 2.25) сигнал после входного устройства поступает на смеситель 11 . На него же подается напряжение с перестраиваемого вручную гетеродина 12 . Между смесителями 1 и 2 включен усилитель промежуточной частоты 11 .

Рис. 2.25. Структурная схема анализатора с двумя гетеродинами:

1 – входное устройство; 2 – второй смеситель; 3 – резонатор; 4 – детектор; 5 –широкополосный усилитель; 6 – второй гетеродин; 7 – модулятор; 8 – усилитель горизонтального отклонения; 9 – индикатор; 10 – первый смеситель; 11 – усилитель промежуточной частоты; 12 – первый гетеродин


Для подавления помехи по зеркальному каналу промежуточную частоту выбирают больше верхней частоты спектра сигнала. Использование двух гетеродинов позволяет градуировать экран осциллографа по частоте, так как при изменении частоты первого гетеродина разметка шкалы не изменяется. При использовании одного гетеродина изменение его диапазона частот вызывает изменение масштаба по частоте. В анализаторах спектра используют пиковые или среднеквадратичные детекторы, а иногда последовательное соединение среднеквадратичного и пикового детекторов. Для повышения точности анализаторов вместо электронно-лу­чевой трубки применяют регистрирующие приборы. Для получения значений амплитуд спектра в логарифмическом масштабе (в дБ) перед регистрирующим прибором включают линейно-логарифмический преобразователь.

Структурная схема анализатора спектра параллельного типа приведена на рис. 2.26.

Рис. 2.26. Структурная схема анализатора параллельного типа

Исследуемый сигнал после входного устройства 1 поступает на п резонаторов 2i ,…,2n . Напряжение с резонаторов после прохождения через детектор 3 фиксируется регистрирующим устройством 4 . В автоматическом варианте параллельного анализатора вместо переключателя устанавливается коммутатор. Синхронно с переключением каналов изменяется развертка регистрирующего прибора. Кроме рассмотренных последовательных и параллельных ана­лизаторов спектра существуют комбинированные, одна из воз­можных схем которых приведена на рис. 2.27.

Рис. 2.27. Структурная схема автоматического анализатора параллельного типа

В этой схеме анализируемый сигнал после входного устройства 1 поступает на смеситель 2 . Смешанный с напряжением гетеродина 7 сигнал промежуточной частоты анализируется и резонаторами 3i ,…,3n . Выходное напряжение с резонаторов проходит через коммутатор 4 и детектор 5 на регистрирующее устройство 6 . Развертывающее устройство последнего синхронизируется с работой коммутатора и модулятора 8 , который изменяет частоту гетеродина по определенному закону. Комбинированные анализаторы позволяют использовать быстродействие параллельного и простоту схемы последовательного анализаторов.

Рассмотрим структурную схему анализатора без резонаторов (Рис. 2.28), которая реализует выражение (2.26). Исследуемый сигнал после входного устройства 7 , поступает на два переумножителя 3 , в одном из которых умножается на sinωt, а в другом на cosωt. Синусно-косинусные напряжения вырабатываются генератором 2 . С выхода переемножителей напряжения подаются на интеграторы 4 , на выходе которых через время t И получим напряжения, пропорциональные синусной и косинусной составляющим спектра.

Рис. 2.28. Структурная схема анализатора без резонаторов

, (2.43)

. (2.44)

При идеальности всех устройств в схемы имеем идеальный анализатор с бесконечной разрешающей способностью (при t И → ∞) Предположим, что интегратор заменен RC-фильтром с пос­тоянной времени τ = RC. Коэффициент передачи фильтра

. (2.46)

Пусть входной сигнал

, (2.47)

тогда напряжения на выходе переумножителей

Если принять ω ≈ ω r то на выходе RC-фильтра напряжение суммарной частоты (ω + ω r) будет значительно меньше напряжения разностной частоты. Поэтому можно написать, что

, (2.50)

. (2.51)

После возведения в квадрат, суммирования и извлечения корня получаем

. (2.52)

Это выражение подобно выражению для простого колебатель­ного контура. В качестве таких генераторов используют LC-генераторы, RC-генераторы и релаксационные. У релаксационных генераторов можно получить хорошую линейность модуляционной характеристики.

Рис. 2.29. Структурная схема генератора качающейся частоты

с обратной связью

Для получения синусоидальной формы кривой на их выходе ставится фильтр нижних частот.

В ИАЧХ эти генераторы не распространены в связи со слож­ностью получения широкой полосы качания частот при синусо­идальной форме выходного напряжения. Рассмотрим способы улучшения линейности модуляционной характеристики ИАЧХ.

Другим способом является использование отрицательной об­ратной связи. В качестве звена обратной связи применен частотный детектор ЧД. Так как характеристики этой схемы определяются в основном звеном обратной связи, то к частотному детектору предъявляются жесткие требования: он должен обладать высокой стабильностью и хорошей линейностью в диапазоне качания частоты.

Кроме рассмотренных методов для улучшения линейности модуляционной характеристики используют коррекцию модулирующего напряжения с помощью нелинейных элементов.

Для получения частотных меток на экране индикатора применяется метод нулевых биений или метод остановки частоты. Схема ИАЧХ, построенная с использованием метода нулевых биений, представлена на рис. 2.30.

Рис. 2.30. Структурная схема формирователя меток

К входным параметрам прибора относятся: чувствительность; полоса пропускания; динамический диапазон; входное сопротивление.

Погрешность ИАЧХ по амплитуде определяется неравномер­ностью выходного напряжения в полосе качания, неравномер­ностью АЧХ и нелинейностью детектора и усилителя вертикального отклонения, погрешностью отсчета амплитуды. Неравномерность выходного напряжения оценивается выраже­нием

, (2.53)

где U max и U min – максимальное и минимальное значения выходного напряжения в полосе качания.

Неравномерность собственной частотной характеристики ИАЧХ в полосе качания определяется по изображению на экране индикатора выходного напряжения прибора, измеренного собственным детектором, и рассчитывается по формуле

, (2.54)

где l max и l min – максимальное и минимальное отклонения луча в полосе качания.

Погрешность ИАЧХ по частоте определяется погрешностью узла меток и нелинейностью частотного масштаба, которую можно определить по формуле

, (2.55)

где Δ f max – максимальное отклонение частоты от линейного закона ее изменения; f В f Н высокая и низкая полосы качания.

При исследовании полосы пропускания резонансных устройств удобно иметь на экране три метки: центральная соответствует резонансной частоте, а две крайние отмечают полосу пропускания устройства. Для получения этих меток и нужен генератор низкой частоты ГНЧ, который модулирует амплитуду калибровочного генератора. Метод остановки частоты заключается в том, что модулирую­щее напряжение имеет не пилообразную, а пилообразно-ступенчатую форму (Рис. 2.31).

Рис.2.31. График линейно-ступенчатого напряжения

В момент времени 1 , остановки изменения частоты на экране появится яркая точка и в этот момент измеряется частота. Для получения высокой точности используют цифровой частотомер. Меняя момент остановки, можно измерить частоту любой точки АЧХ.

 


Читайте:



Конспект занятия "георгиевская лента" план-конспект занятия на тему

Конспект занятия

МДОУ Детский сад общеразвивающего вида № 62 «Аленький цветочек» Архангельская область г. Котлас Конспект занятия по теме «История Георгиевской...

«Падение души человеческой в рассказе А

«Падение души человеческой в рассказе А

Можно спорить о жанре произведения "Ионыч" (1898): с одной стороны, оно вроде бы и является рассказом, но ведь в нём фактически описана вся жизнь...

Международный кембриджский экзамен BEC — для бизнеса и делового общения

Международный кембриджский экзамен BEC — для бизнеса и делового общения

BEC (Business English Certificate) – один из Кембриджских экзаменов, сертификат которого подтверждает вашу языковую компетенцию в сфере...

Эдуард Сагалаев: «Всегда был тот, кто за телевидением присматривал, а иногда — достаточно жестко

Эдуард Сагалаев: «Всегда был тот, кто за телевидением присматривал, а иногда — достаточно жестко

Один из отцов-основателей независимого телевидения в России Эдуард Сагалаев руководил Молодежной редакцией Центрального телевидения, был и...

feed-image RSS